Рассчитать высоту треугольника со сторонами 125, 97 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 97 + 88}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-125)(155-97)(155-88)}}{97}\normalsize = 87.6468144}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-125)(155-97)(155-88)}}{125}\normalsize = 68.013928}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-125)(155-97)(155-88)}}{88}\normalsize = 96.6106932}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 97 и 88 равна 87.6468144
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 97 и 88 равна 68.013928
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 97 и 88 равна 96.6106932
Ссылка на результат
?n1=125&n2=97&n3=88
Найти высоту треугольника со сторонами 125, 104 и 42
Найти высоту треугольника со сторонами 143, 111 и 89
Найти высоту треугольника со сторонами 32, 32 и 27
Найти высоту треугольника со сторонами 91, 68 и 65
Найти высоту треугольника со сторонами 41, 41 и 9
Найти высоту треугольника со сторонами 54, 51 и 29
Найти высоту треугольника со сторонами 143, 111 и 89
Найти высоту треугольника со сторонами 32, 32 и 27
Найти высоту треугольника со сторонами 91, 68 и 65
Найти высоту треугольника со сторонами 41, 41 и 9
Найти высоту треугольника со сторонами 54, 51 и 29