Рассчитать высоту треугольника со сторонами 125, 98 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 98 + 64}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-125)(143.5-98)(143.5-64)}}{98}\normalsize = 63.2419128}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-125)(143.5-98)(143.5-64)}}{125}\normalsize = 49.5816597}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-125)(143.5-98)(143.5-64)}}{64}\normalsize = 96.8391791}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 98 и 64 равна 63.2419128
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 98 и 64 равна 49.5816597
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 98 и 64 равна 96.8391791
Ссылка на результат
?n1=125&n2=98&n3=64
Найти высоту треугольника со сторонами 136, 109 и 52
Найти высоту треугольника со сторонами 59, 54 и 16
Найти высоту треугольника со сторонами 133, 132 и 54
Найти высоту треугольника со сторонами 94, 89 и 23
Найти высоту треугольника со сторонами 148, 103 и 80
Найти высоту треугольника со сторонами 142, 135 и 120
Найти высоту треугольника со сторонами 59, 54 и 16
Найти высоту треугольника со сторонами 133, 132 и 54
Найти высоту треугольника со сторонами 94, 89 и 23
Найти высоту треугольника со сторонами 148, 103 и 80
Найти высоту треугольника со сторонами 142, 135 и 120