Рассчитать высоту треугольника со сторонами 125, 98 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 98 + 84}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-125)(153.5-98)(153.5-84)}}{98}\normalsize = 83.8338543}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-125)(153.5-98)(153.5-84)}}{125}\normalsize = 65.7257418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-125)(153.5-98)(153.5-84)}}{84}\normalsize = 97.8061634}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 98 и 84 равна 83.8338543
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 98 и 84 равна 65.7257418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 98 и 84 равна 97.8061634
Ссылка на результат
?n1=125&n2=98&n3=84
Найти высоту треугольника со сторонами 101, 74 и 53
Найти высоту треугольника со сторонами 44, 38 и 25
Найти высоту треугольника со сторонами 140, 140 и 72
Найти высоту треугольника со сторонами 133, 111 и 26
Найти высоту треугольника со сторонами 87, 80 и 31
Найти высоту треугольника со сторонами 139, 130 и 123
Найти высоту треугольника со сторонами 44, 38 и 25
Найти высоту треугольника со сторонами 140, 140 и 72
Найти высоту треугольника со сторонами 133, 111 и 26
Найти высоту треугольника со сторонами 87, 80 и 31
Найти высоту треугольника со сторонами 139, 130 и 123