Рассчитать высоту треугольника со сторонами 126, 100 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 100 + 32}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-126)(129-100)(129-32)}}{100}\normalsize = 20.8674963}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-126)(129-100)(129-32)}}{126}\normalsize = 16.561505}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-126)(129-100)(129-32)}}{32}\normalsize = 65.2109258}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 100 и 32 равна 20.8674963
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 100 и 32 равна 16.561505
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 100 и 32 равна 65.2109258
Ссылка на результат
?n1=126&n2=100&n3=32
Найти высоту треугольника со сторонами 150, 134 и 89
Найти высоту треугольника со сторонами 95, 68 и 30
Найти высоту треугольника со сторонами 120, 108 и 106
Найти высоту треугольника со сторонами 141, 131 и 36
Найти высоту треугольника со сторонами 118, 90 и 67
Найти высоту треугольника со сторонами 108, 73 и 52
Найти высоту треугольника со сторонами 95, 68 и 30
Найти высоту треугольника со сторонами 120, 108 и 106
Найти высоту треугольника со сторонами 141, 131 и 36
Найти высоту треугольника со сторонами 118, 90 и 67
Найти высоту треугольника со сторонами 108, 73 и 52