Рассчитать высоту треугольника со сторонами 126, 101 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 101 + 51}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-126)(139-101)(139-51)}}{101}\normalsize = 48.6766669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-126)(139-101)(139-51)}}{126}\normalsize = 39.0185981}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-126)(139-101)(139-51)}}{51}\normalsize = 96.3988893}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 101 и 51 равна 48.6766669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 101 и 51 равна 39.0185981
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 101 и 51 равна 96.3988893
Ссылка на результат
?n1=126&n2=101&n3=51
Найти высоту треугольника со сторонами 116, 98 и 58
Найти высоту треугольника со сторонами 123, 108 и 21
Найти высоту треугольника со сторонами 108, 95 и 45
Найти высоту треугольника со сторонами 133, 128 и 27
Найти высоту треугольника со сторонами 48, 35 и 21
Найти высоту треугольника со сторонами 131, 130 и 51
Найти высоту треугольника со сторонами 123, 108 и 21
Найти высоту треугольника со сторонами 108, 95 и 45
Найти высоту треугольника со сторонами 133, 128 и 27
Найти высоту треугольника со сторонами 48, 35 и 21
Найти высоту треугольника со сторонами 131, 130 и 51