Рассчитать высоту треугольника со сторонами 126, 103 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 103 + 64}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-126)(146.5-103)(146.5-64)}}{103}\normalsize = 63.7470536}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-126)(146.5-103)(146.5-64)}}{126}\normalsize = 52.1106867}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-126)(146.5-103)(146.5-64)}}{64}\normalsize = 102.592914}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 103 и 64 равна 63.7470536
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 103 и 64 равна 52.1106867
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 103 и 64 равна 102.592914
Ссылка на результат
?n1=126&n2=103&n3=64
Найти высоту треугольника со сторонами 104, 81 и 58
Найти высоту треугольника со сторонами 138, 112 и 49
Найти высоту треугольника со сторонами 113, 109 и 61
Найти высоту треугольника со сторонами 108, 70 и 64
Найти высоту треугольника со сторонами 104, 104 и 70
Найти высоту треугольника со сторонами 50, 49 и 25
Найти высоту треугольника со сторонами 138, 112 и 49
Найти высоту треугольника со сторонами 113, 109 и 61
Найти высоту треугольника со сторонами 108, 70 и 64
Найти высоту треугольника со сторонами 104, 104 и 70
Найти высоту треугольника со сторонами 50, 49 и 25