Рассчитать высоту треугольника со сторонами 126, 106 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 106 + 90}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-126)(161-106)(161-90)}}{106}\normalsize = 88.507813}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-126)(161-106)(161-90)}}{126}\normalsize = 74.4589538}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-126)(161-106)(161-90)}}{90}\normalsize = 104.242535}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 106 и 90 равна 88.507813
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 106 и 90 равна 74.4589538
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 106 и 90 равна 104.242535
Ссылка на результат
?n1=126&n2=106&n3=90
Найти высоту треугольника со сторонами 22, 20 и 4
Найти высоту треугольника со сторонами 113, 90 и 48
Найти высоту треугольника со сторонами 130, 103 и 73
Найти высоту треугольника со сторонами 100, 99 и 32
Найти высоту треугольника со сторонами 61, 53 и 9
Найти высоту треугольника со сторонами 102, 90 и 41
Найти высоту треугольника со сторонами 113, 90 и 48
Найти высоту треугольника со сторонами 130, 103 и 73
Найти высоту треугольника со сторонами 100, 99 и 32
Найти высоту треугольника со сторонами 61, 53 и 9
Найти высоту треугольника со сторонами 102, 90 и 41