Рассчитать высоту треугольника со сторонами 126, 108 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 108 + 41}{2}} \normalsize = 137.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137.5(137.5-126)(137.5-108)(137.5-41)}}{108}\normalsize = 39.2899227}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137.5(137.5-126)(137.5-108)(137.5-41)}}{126}\normalsize = 33.6770766}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137.5(137.5-126)(137.5-108)(137.5-41)}}{41}\normalsize = 103.495406}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 108 и 41 равна 39.2899227
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 108 и 41 равна 33.6770766
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 108 и 41 равна 103.495406
Ссылка на результат
?n1=126&n2=108&n3=41
Найти высоту треугольника со сторонами 76, 57 и 29
Найти высоту треугольника со сторонами 76, 74 и 22
Найти высоту треугольника со сторонами 118, 62 и 57
Найти высоту треугольника со сторонами 28, 22 и 15
Найти высоту треугольника со сторонами 130, 108 и 50
Найти высоту треугольника со сторонами 144, 141 и 99
Найти высоту треугольника со сторонами 76, 74 и 22
Найти высоту треугольника со сторонами 118, 62 и 57
Найти высоту треугольника со сторонами 28, 22 и 15
Найти высоту треугольника со сторонами 130, 108 и 50
Найти высоту треугольника со сторонами 144, 141 и 99