Рассчитать высоту треугольника со сторонами 126, 108 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 108 + 55}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-126)(144.5-108)(144.5-55)}}{108}\normalsize = 54.7247741}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-126)(144.5-108)(144.5-55)}}{126}\normalsize = 46.9069493}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-126)(144.5-108)(144.5-55)}}{55}\normalsize = 107.459556}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 108 и 55 равна 54.7247741
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 108 и 55 равна 46.9069493
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 108 и 55 равна 107.459556
Ссылка на результат
?n1=126&n2=108&n3=55
Найти высоту треугольника со сторонами 139, 78 и 74
Найти высоту треугольника со сторонами 129, 89 и 59
Найти высоту треугольника со сторонами 86, 76 и 72
Найти высоту треугольника со сторонами 117, 86 и 73
Найти высоту треугольника со сторонами 120, 81 и 75
Найти высоту треугольника со сторонами 76, 56 и 36
Найти высоту треугольника со сторонами 129, 89 и 59
Найти высоту треугольника со сторонами 86, 76 и 72
Найти высоту треугольника со сторонами 117, 86 и 73
Найти высоту треугольника со сторонами 120, 81 и 75
Найти высоту треугольника со сторонами 76, 56 и 36