Рассчитать высоту треугольника со сторонами 126, 108 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 108 + 75}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-126)(154.5-108)(154.5-75)}}{108}\normalsize = 74.714166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-126)(154.5-108)(154.5-75)}}{126}\normalsize = 64.0407137}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-126)(154.5-108)(154.5-75)}}{75}\normalsize = 107.588399}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 108 и 75 равна 74.714166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 108 и 75 равна 64.0407137
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 108 и 75 равна 107.588399
Ссылка на результат
?n1=126&n2=108&n3=75
Найти высоту треугольника со сторонами 66, 62 и 50
Найти высоту треугольника со сторонами 107, 92 и 29
Найти высоту треугольника со сторонами 134, 76 и 66
Найти высоту треугольника со сторонами 141, 113 и 60
Найти высоту треугольника со сторонами 122, 76 и 59
Найти высоту треугольника со сторонами 134, 114 и 98
Найти высоту треугольника со сторонами 107, 92 и 29
Найти высоту треугольника со сторонами 134, 76 и 66
Найти высоту треугольника со сторонами 141, 113 и 60
Найти высоту треугольника со сторонами 122, 76 и 59
Найти высоту треугольника со сторонами 134, 114 и 98