Рассчитать высоту треугольника со сторонами 126, 114 и 110
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 114 + 110}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-126)(175-114)(175-110)}}{114}\normalsize = 102.297214}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-126)(175-114)(175-110)}}{126}\normalsize = 92.5546218}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-126)(175-114)(175-110)}}{110}\normalsize = 106.017112}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 114 и 110 равна 102.297214
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 114 и 110 равна 92.5546218
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 114 и 110 равна 106.017112
Ссылка на результат
?n1=126&n2=114&n3=110
Найти высоту треугольника со сторонами 113, 102 и 20
Найти высоту треугольника со сторонами 83, 83 и 22
Найти высоту треугольника со сторонами 58, 58 и 2
Найти высоту треугольника со сторонами 54, 29 и 28
Найти высоту треугольника со сторонами 107, 105 и 59
Найти высоту треугольника со сторонами 115, 109 и 81
Найти высоту треугольника со сторонами 83, 83 и 22
Найти высоту треугольника со сторонами 58, 58 и 2
Найти высоту треугольника со сторонами 54, 29 и 28
Найти высоту треугольника со сторонами 107, 105 и 59
Найти высоту треугольника со сторонами 115, 109 и 81