Рассчитать высоту треугольника со сторонами 126, 114 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 114 + 23}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-126)(131.5-114)(131.5-23)}}{114}\normalsize = 20.5590602}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-126)(131.5-114)(131.5-23)}}{126}\normalsize = 18.6010545}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-126)(131.5-114)(131.5-23)}}{23}\normalsize = 101.901429}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 114 и 23 равна 20.5590602
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 114 и 23 равна 18.6010545
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 114 и 23 равна 101.901429
Ссылка на результат
?n1=126&n2=114&n3=23
Найти высоту треугольника со сторонами 86, 75 и 33
Найти высоту треугольника со сторонами 107, 68 и 49
Найти высоту треугольника со сторонами 135, 94 и 61
Найти высоту треугольника со сторонами 119, 117 и 24
Найти высоту треугольника со сторонами 122, 88 и 76
Найти высоту треугольника со сторонами 62, 59 и 9
Найти высоту треугольника со сторонами 107, 68 и 49
Найти высоту треугольника со сторонами 135, 94 и 61
Найти высоту треугольника со сторонами 119, 117 и 24
Найти высоту треугольника со сторонами 122, 88 и 76
Найти высоту треугольника со сторонами 62, 59 и 9