Рассчитать высоту треугольника со сторонами 126, 114 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 114 + 42}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-126)(141-114)(141-42)}}{114}\normalsize = 41.7138053}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-126)(141-114)(141-42)}}{126}\normalsize = 37.7410619}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-126)(141-114)(141-42)}}{42}\normalsize = 113.223186}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 114 и 42 равна 41.7138053
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 114 и 42 равна 37.7410619
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 114 и 42 равна 113.223186
Ссылка на результат
?n1=126&n2=114&n3=42
Найти высоту треугольника со сторонами 128, 110 и 106
Найти высоту треугольника со сторонами 140, 117 и 110
Найти высоту треугольника со сторонами 115, 111 и 108
Найти высоту треугольника со сторонами 75, 55 и 47
Найти высоту треугольника со сторонами 149, 139 и 102
Найти высоту треугольника со сторонами 98, 95 и 93
Найти высоту треугольника со сторонами 140, 117 и 110
Найти высоту треугольника со сторонами 115, 111 и 108
Найти высоту треугольника со сторонами 75, 55 и 47
Найти высоту треугольника со сторонами 149, 139 и 102
Найти высоту треугольника со сторонами 98, 95 и 93