Рассчитать высоту треугольника со сторонами 126, 116 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 116 + 56}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-126)(149-116)(149-56)}}{116}\normalsize = 55.9148936}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-126)(149-116)(149-56)}}{126}\normalsize = 51.4772036}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-126)(149-116)(149-56)}}{56}\normalsize = 115.823708}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 116 и 56 равна 55.9148936
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 116 и 56 равна 51.4772036
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 116 и 56 равна 115.823708
Ссылка на результат
?n1=126&n2=116&n3=56
Найти высоту треугольника со сторонами 130, 119 и 96
Найти высоту треугольника со сторонами 144, 102 и 64
Найти высоту треугольника со сторонами 107, 82 и 39
Найти высоту треугольника со сторонами 142, 122 и 74
Найти высоту треугольника со сторонами 107, 92 и 61
Найти высоту треугольника со сторонами 135, 116 и 99
Найти высоту треугольника со сторонами 144, 102 и 64
Найти высоту треугольника со сторонами 107, 82 и 39
Найти высоту треугольника со сторонами 142, 122 и 74
Найти высоту треугольника со сторонами 107, 92 и 61
Найти высоту треугольника со сторонами 135, 116 и 99