Рассчитать высоту треугольника со сторонами 126, 117 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 117 + 90}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-126)(166.5-117)(166.5-90)}}{117}\normalsize = 86.3797776}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-126)(166.5-117)(166.5-90)}}{126}\normalsize = 80.2097935}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-126)(166.5-117)(166.5-90)}}{90}\normalsize = 112.293711}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 117 и 90 равна 86.3797776
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 117 и 90 равна 80.2097935
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 117 и 90 равна 112.293711
Ссылка на результат
?n1=126&n2=117&n3=90
Найти высоту треугольника со сторонами 149, 134 и 58
Найти высоту треугольника со сторонами 111, 85 и 47
Найти высоту треугольника со сторонами 150, 127 и 98
Найти высоту треугольника со сторонами 136, 98 и 57
Найти высоту треугольника со сторонами 52, 34 и 29
Найти высоту треугольника со сторонами 144, 138 и 16
Найти высоту треугольника со сторонами 111, 85 и 47
Найти высоту треугольника со сторонами 150, 127 и 98
Найти высоту треугольника со сторонами 136, 98 и 57
Найти высоту треугольника со сторонами 52, 34 и 29
Найти высоту треугольника со сторонами 144, 138 и 16