Рассчитать высоту треугольника со сторонами 126, 118 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 118 + 14}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-126)(129-118)(129-14)}}{118}\normalsize = 11.8590181}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-126)(129-118)(129-14)}}{126}\normalsize = 11.1060646}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-126)(129-118)(129-14)}}{14}\normalsize = 99.9545815}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 118 и 14 равна 11.8590181
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 118 и 14 равна 11.1060646
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 118 и 14 равна 99.9545815
Ссылка на результат
?n1=126&n2=118&n3=14
Найти высоту треугольника со сторонами 129, 101 и 62
Найти высоту треугольника со сторонами 118, 90 и 87
Найти высоту треугольника со сторонами 138, 109 и 36
Найти высоту треугольника со сторонами 128, 115 и 68
Найти высоту треугольника со сторонами 93, 76 и 42
Найти высоту треугольника со сторонами 134, 118 и 21
Найти высоту треугольника со сторонами 118, 90 и 87
Найти высоту треугольника со сторонами 138, 109 и 36
Найти высоту треугольника со сторонами 128, 115 и 68
Найти высоту треугольника со сторонами 93, 76 и 42
Найти высоту треугольника со сторонами 134, 118 и 21