Рассчитать высоту треугольника со сторонами 126, 118 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 118 + 39}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-126)(141.5-118)(141.5-39)}}{118}\normalsize = 38.9572167}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-126)(141.5-118)(141.5-39)}}{126}\normalsize = 36.4837426}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-126)(141.5-118)(141.5-39)}}{39}\normalsize = 117.870553}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 118 и 39 равна 38.9572167
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 118 и 39 равна 36.4837426
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 118 и 39 равна 117.870553
Ссылка на результат
?n1=126&n2=118&n3=39
Найти высоту треугольника со сторонами 150, 99 и 89
Найти высоту треугольника со сторонами 138, 85 и 73
Найти высоту треугольника со сторонами 150, 119 и 45
Найти высоту треугольника со сторонами 122, 100 и 59
Найти высоту треугольника со сторонами 92, 91 и 24
Найти высоту треугольника со сторонами 141, 99 и 72
Найти высоту треугольника со сторонами 138, 85 и 73
Найти высоту треугольника со сторонами 150, 119 и 45
Найти высоту треугольника со сторонами 122, 100 и 59
Найти высоту треугольника со сторонами 92, 91 и 24
Найти высоту треугольника со сторонами 141, 99 и 72