Рассчитать высоту треугольника со сторонами 126, 121 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 121 + 104}{2}} \normalsize = 175.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175.5(175.5-126)(175.5-121)(175.5-104)}}{121}\normalsize = 96.1694334}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175.5(175.5-126)(175.5-121)(175.5-104)}}{126}\normalsize = 92.353186}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175.5(175.5-126)(175.5-121)(175.5-104)}}{104}\normalsize = 111.889437}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 121 и 104 равна 96.1694334
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 121 и 104 равна 92.353186
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 121 и 104 равна 111.889437
Ссылка на результат
?n1=126&n2=121&n3=104
Найти высоту треугольника со сторонами 138, 124 и 102
Найти высоту треугольника со сторонами 146, 135 и 89
Найти высоту треугольника со сторонами 58, 50 и 33
Найти высоту треугольника со сторонами 50, 41 и 11
Найти высоту треугольника со сторонами 98, 96 и 21
Найти высоту треугольника со сторонами 118, 118 и 56
Найти высоту треугольника со сторонами 146, 135 и 89
Найти высоту треугольника со сторонами 58, 50 и 33
Найти высоту треугольника со сторонами 50, 41 и 11
Найти высоту треугольника со сторонами 98, 96 и 21
Найти высоту треугольника со сторонами 118, 118 и 56