Рассчитать высоту треугольника со сторонами 126, 121 и 108
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 121 + 108}{2}} \normalsize = 177.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{177.5(177.5-126)(177.5-121)(177.5-108)}}{121}\normalsize = 99.0293765}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{177.5(177.5-126)(177.5-121)(177.5-108)}}{126}\normalsize = 95.0996394}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{177.5(177.5-126)(177.5-121)(177.5-108)}}{108}\normalsize = 110.949579}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 121 и 108 равна 99.0293765
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 121 и 108 равна 95.0996394
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 121 и 108 равна 110.949579
Ссылка на результат
?n1=126&n2=121&n3=108
Найти высоту треугольника со сторонами 134, 111 и 54
Найти высоту треугольника со сторонами 102, 98 и 12
Найти высоту треугольника со сторонами 141, 125 и 22
Найти высоту треугольника со сторонами 128, 122 и 49
Найти высоту треугольника со сторонами 74, 63 и 38
Найти высоту треугольника со сторонами 105, 95 и 33
Найти высоту треугольника со сторонами 102, 98 и 12
Найти высоту треугольника со сторонами 141, 125 и 22
Найти высоту треугольника со сторонами 128, 122 и 49
Найти высоту треугольника со сторонами 74, 63 и 38
Найти высоту треугольника со сторонами 105, 95 и 33