Рассчитать высоту треугольника со сторонами 126, 122 и 116
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 122 + 116}{2}} \normalsize = 182}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{182(182-126)(182-122)(182-116)}}{122}\normalsize = 104.147168}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{182(182-126)(182-122)(182-116)}}{126}\normalsize = 100.840909}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{182(182-126)(182-122)(182-116)}}{116}\normalsize = 109.534091}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 122 и 116 равна 104.147168
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 122 и 116 равна 100.840909
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 122 и 116 равна 109.534091
Ссылка на результат
?n1=126&n2=122&n3=116
Найти высоту треугольника со сторонами 148, 142 и 63
Найти высоту треугольника со сторонами 143, 108 и 37
Найти высоту треугольника со сторонами 135, 118 и 30
Найти высоту треугольника со сторонами 90, 90 и 4
Найти высоту треугольника со сторонами 132, 128 и 12
Найти высоту треугольника со сторонами 139, 137 и 128
Найти высоту треугольника со сторонами 143, 108 и 37
Найти высоту треугольника со сторонами 135, 118 и 30
Найти высоту треугольника со сторонами 90, 90 и 4
Найти высоту треугольника со сторонами 132, 128 и 12
Найти высоту треугольника со сторонами 139, 137 и 128