Рассчитать высоту треугольника со сторонами 126, 122 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 122 + 66}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-126)(157-122)(157-66)}}{122}\normalsize = 64.5439524}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-126)(157-122)(157-66)}}{126}\normalsize = 62.4949381}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-126)(157-122)(157-66)}}{66}\normalsize = 119.308518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 122 и 66 равна 64.5439524
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 122 и 66 равна 62.4949381
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 122 и 66 равна 119.308518
Ссылка на результат
?n1=126&n2=122&n3=66
Найти высоту треугольника со сторонами 90, 83 и 28
Найти высоту треугольника со сторонами 84, 81 и 79
Найти высоту треугольника со сторонами 32, 27 и 11
Найти высоту треугольника со сторонами 104, 84 и 83
Найти высоту треугольника со сторонами 128, 101 и 85
Найти высоту треугольника со сторонами 141, 135 и 86
Найти высоту треугольника со сторонами 84, 81 и 79
Найти высоту треугольника со сторонами 32, 27 и 11
Найти высоту треугольника со сторонами 104, 84 и 83
Найти высоту треугольника со сторонами 128, 101 и 85
Найти высоту треугольника со сторонами 141, 135 и 86