Рассчитать высоту треугольника со сторонами 126, 123 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 123 + 85}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-126)(167-123)(167-85)}}{123}\normalsize = 80.8180398}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-126)(167-123)(167-85)}}{126}\normalsize = 78.8938007}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-126)(167-123)(167-85)}}{85}\normalsize = 116.948458}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 123 и 85 равна 80.8180398
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 123 и 85 равна 78.8938007
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 123 и 85 равна 116.948458
Ссылка на результат
?n1=126&n2=123&n3=85
Найти высоту треугольника со сторонами 136, 97 и 80
Найти высоту треугольника со сторонами 148, 120 и 50
Найти высоту треугольника со сторонами 118, 95 и 71
Найти высоту треугольника со сторонами 123, 89 и 63
Найти высоту треугольника со сторонами 85, 52 и 38
Найти высоту треугольника со сторонами 132, 111 и 40
Найти высоту треугольника со сторонами 148, 120 и 50
Найти высоту треугольника со сторонами 118, 95 и 71
Найти высоту треугольника со сторонами 123, 89 и 63
Найти высоту треугольника со сторонами 85, 52 и 38
Найти высоту треугольника со сторонами 132, 111 и 40