Рассчитать высоту треугольника со сторонами 126, 125 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 125 + 47}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-126)(149-125)(149-47)}}{125}\normalsize = 46.3428503}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-126)(149-125)(149-47)}}{126}\normalsize = 45.9750499}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-126)(149-125)(149-47)}}{47}\normalsize = 123.252261}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 125 и 47 равна 46.3428503
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 125 и 47 равна 45.9750499
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 125 и 47 равна 123.252261
Ссылка на результат
?n1=126&n2=125&n3=47
Найти высоту треугольника со сторонами 137, 99 и 63
Найти высоту треугольника со сторонами 89, 63 и 38
Найти высоту треугольника со сторонами 93, 80 и 19
Найти высоту треугольника со сторонами 150, 96 и 87
Найти высоту треугольника со сторонами 143, 137 и 74
Найти высоту треугольника со сторонами 92, 90 и 70
Найти высоту треугольника со сторонами 89, 63 и 38
Найти высоту треугольника со сторонами 93, 80 и 19
Найти высоту треугольника со сторонами 150, 96 и 87
Найти высоту треугольника со сторонами 143, 137 и 74
Найти высоту треугольника со сторонами 92, 90 и 70