Рассчитать высоту треугольника со сторонами 126, 75 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 75 + 71}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-126)(136-75)(136-71)}}{75}\normalsize = 61.9241113}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-126)(136-75)(136-71)}}{126}\normalsize = 36.85959}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-126)(136-75)(136-71)}}{71}\normalsize = 65.4127936}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 75 и 71 равна 61.9241113
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 75 и 71 равна 36.85959
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 75 и 71 равна 65.4127936
Ссылка на результат
?n1=126&n2=75&n3=71
Найти высоту треугольника со сторонами 34, 18 и 18
Найти высоту треугольника со сторонами 139, 138 и 104
Найти высоту треугольника со сторонами 133, 106 и 88
Найти высоту треугольника со сторонами 58, 54 и 24
Найти высоту треугольника со сторонами 50, 40 и 13
Найти высоту треугольника со сторонами 96, 64 и 59
Найти высоту треугольника со сторонами 139, 138 и 104
Найти высоту треугольника со сторонами 133, 106 и 88
Найти высоту треугольника со сторонами 58, 54 и 24
Найти высоту треугольника со сторонами 50, 40 и 13
Найти высоту треугольника со сторонами 96, 64 и 59