Рассчитать высоту треугольника со сторонами 126, 85 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 85 + 60}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-126)(135.5-85)(135.5-60)}}{85}\normalsize = 52.1268744}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-126)(135.5-85)(135.5-60)}}{126}\normalsize = 35.164955}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-126)(135.5-85)(135.5-60)}}{60}\normalsize = 73.8464054}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 85 и 60 равна 52.1268744
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 85 и 60 равна 35.164955
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 85 и 60 равна 73.8464054
Ссылка на результат
?n1=126&n2=85&n3=60
Найти высоту треугольника со сторонами 133, 112 и 112
Найти высоту треугольника со сторонами 78, 72 и 40
Найти высоту треугольника со сторонами 101, 75 и 63
Найти высоту треугольника со сторонами 104, 104 и 59
Найти высоту треугольника со сторонами 130, 127 и 18
Найти высоту треугольника со сторонами 146, 77 и 73
Найти высоту треугольника со сторонами 78, 72 и 40
Найти высоту треугольника со сторонами 101, 75 и 63
Найти высоту треугольника со сторонами 104, 104 и 59
Найти высоту треугольника со сторонами 130, 127 и 18
Найти высоту треугольника со сторонами 146, 77 и 73