Рассчитать высоту треугольника со сторонами 126, 94 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 94 + 75}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-126)(147.5-94)(147.5-75)}}{94}\normalsize = 74.62138}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-126)(147.5-94)(147.5-75)}}{126}\normalsize = 55.6699184}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-126)(147.5-94)(147.5-75)}}{75}\normalsize = 93.525463}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 94 и 75 равна 74.62138
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 94 и 75 равна 55.6699184
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 94 и 75 равна 93.525463
Ссылка на результат
?n1=126&n2=94&n3=75
Найти высоту треугольника со сторонами 137, 128 и 109
Найти высоту треугольника со сторонами 118, 86 и 59
Найти высоту треугольника со сторонами 78, 60 и 56
Найти высоту треугольника со сторонами 100, 97 и 16
Найти высоту треугольника со сторонами 147, 90 и 82
Найти высоту треугольника со сторонами 143, 136 и 27
Найти высоту треугольника со сторонами 118, 86 и 59
Найти высоту треугольника со сторонами 78, 60 и 56
Найти высоту треугольника со сторонами 100, 97 и 16
Найти высоту треугольника со сторонами 147, 90 и 82
Найти высоту треугольника со сторонами 143, 136 и 27