Рассчитать высоту треугольника со сторонами 126, 97 и 58

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 97 + 58}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-126)(140.5-97)(140.5-58)}}{97}\normalsize = 55.7509186}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-126)(140.5-97)(140.5-58)}}{126}\normalsize = 42.919358}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-126)(140.5-97)(140.5-58)}}{58}\normalsize = 93.2386052}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 97 и 58 равна 55.7509186
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 97 и 58 равна 42.919358
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 97 и 58 равна 93.2386052
Ссылка на результат
?n1=126&n2=97&n3=58