Рассчитать высоту треугольника со сторонами 126, 99 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 99 + 62}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-126)(143.5-99)(143.5-62)}}{99}\normalsize = 60.9675279}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-126)(143.5-99)(143.5-62)}}{126}\normalsize = 47.9030576}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-126)(143.5-99)(143.5-62)}}{62}\normalsize = 97.3513752}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 99 и 62 равна 60.9675279
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 99 и 62 равна 47.9030576
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 99 и 62 равна 97.3513752
Ссылка на результат
?n1=126&n2=99&n3=62
Найти высоту треугольника со сторонами 129, 76 и 55
Найти высоту треугольника со сторонами 104, 79 и 37
Найти высоту треугольника со сторонами 29, 29 и 28
Найти высоту треугольника со сторонами 66, 56 и 15
Найти высоту треугольника со сторонами 125, 97 и 44
Найти высоту треугольника со сторонами 60, 57 и 51
Найти высоту треугольника со сторонами 104, 79 и 37
Найти высоту треугольника со сторонами 29, 29 и 28
Найти высоту треугольника со сторонами 66, 56 и 15
Найти высоту треугольника со сторонами 125, 97 и 44
Найти высоту треугольника со сторонами 60, 57 и 51