Рассчитать высоту треугольника со сторонами 127, 101 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 101 + 57}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-127)(142.5-101)(142.5-57)}}{101}\normalsize = 55.4356327}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-127)(142.5-101)(142.5-57)}}{127}\normalsize = 44.0866056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-127)(142.5-101)(142.5-57)}}{57}\normalsize = 98.228051}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 101 и 57 равна 55.4356327
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 101 и 57 равна 44.0866056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 101 и 57 равна 98.228051
Ссылка на результат
?n1=127&n2=101&n3=57
Найти высоту треугольника со сторонами 84, 62 и 33
Найти высоту треугольника со сторонами 115, 111 и 46
Найти высоту треугольника со сторонами 145, 129 и 48
Найти высоту треугольника со сторонами 103, 94 и 73
Найти высоту треугольника со сторонами 148, 91 и 67
Найти высоту треугольника со сторонами 111, 74 и 50
Найти высоту треугольника со сторонами 115, 111 и 46
Найти высоту треугольника со сторонами 145, 129 и 48
Найти высоту треугольника со сторонами 103, 94 и 73
Найти высоту треугольника со сторонами 148, 91 и 67
Найти высоту треугольника со сторонами 111, 74 и 50