Рассчитать высоту треугольника со сторонами 127, 102 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 102 + 90}{2}} \normalsize = 159.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159.5(159.5-127)(159.5-102)(159.5-90)}}{102}\normalsize = 89.2438243}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159.5(159.5-127)(159.5-102)(159.5-90)}}{127}\normalsize = 71.6761424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159.5(159.5-127)(159.5-102)(159.5-90)}}{90}\normalsize = 101.143001}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 102 и 90 равна 89.2438243
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 102 и 90 равна 71.6761424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 102 и 90 равна 101.143001
Ссылка на результат
?n1=127&n2=102&n3=90
Найти высоту треугольника со сторонами 142, 134 и 73
Найти высоту треугольника со сторонами 111, 93 и 40
Найти высоту треугольника со сторонами 142, 100 и 72
Найти высоту треугольника со сторонами 62, 54 и 38
Найти высоту треугольника со сторонами 128, 109 и 85
Найти высоту треугольника со сторонами 106, 66 и 63
Найти высоту треугольника со сторонами 111, 93 и 40
Найти высоту треугольника со сторонами 142, 100 и 72
Найти высоту треугольника со сторонами 62, 54 и 38
Найти высоту треугольника со сторонами 128, 109 и 85
Найти высоту треугольника со сторонами 106, 66 и 63