Рассчитать высоту треугольника со сторонами 127, 103 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 103 + 41}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-127)(135.5-103)(135.5-41)}}{103}\normalsize = 36.5198905}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-127)(135.5-103)(135.5-41)}}{127}\normalsize = 29.6184938}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-127)(135.5-103)(135.5-41)}}{41}\normalsize = 91.7450907}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 103 и 41 равна 36.5198905
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 103 и 41 равна 29.6184938
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 103 и 41 равна 91.7450907
Ссылка на результат
?n1=127&n2=103&n3=41
Найти высоту треугольника со сторонами 150, 149 и 148
Найти высоту треугольника со сторонами 95, 85 и 43
Найти высоту треугольника со сторонами 137, 110 и 35
Найти высоту треугольника со сторонами 121, 84 и 42
Найти высоту треугольника со сторонами 100, 100 и 40
Найти высоту треугольника со сторонами 137, 128 и 47
Найти высоту треугольника со сторонами 95, 85 и 43
Найти высоту треугольника со сторонами 137, 110 и 35
Найти высоту треугольника со сторонами 121, 84 и 42
Найти высоту треугольника со сторонами 100, 100 и 40
Найти высоту треугольника со сторонами 137, 128 и 47