Рассчитать высоту треугольника со сторонами 127, 106 и 82

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 106 + 82}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-127)(157.5-106)(157.5-82)}}{106}\normalsize = 81.5438889}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-127)(157.5-106)(157.5-82)}}{127}\normalsize = 68.0602537}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-127)(157.5-106)(157.5-82)}}{82}\normalsize = 105.410393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 106 и 82 равна 81.5438889
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 106 и 82 равна 68.0602537
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 106 и 82 равна 105.410393
Ссылка на результат
?n1=127&n2=106&n3=82