Рассчитать высоту треугольника со сторонами 127, 115 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 115 + 106}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-127)(174-115)(174-106)}}{115}\normalsize = 99.6176221}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-127)(174-115)(174-106)}}{127}\normalsize = 90.2049334}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-127)(174-115)(174-106)}}{106}\normalsize = 108.075722}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 115 и 106 равна 99.6176221
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 115 и 106 равна 90.2049334
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 115 и 106 равна 108.075722
Ссылка на результат
?n1=127&n2=115&n3=106
Найти высоту треугольника со сторонами 59, 56 и 16
Найти высоту треугольника со сторонами 85, 76 и 36
Найти высоту треугольника со сторонами 136, 124 и 48
Найти высоту треугольника со сторонами 144, 130 и 73
Найти высоту треугольника со сторонами 124, 94 и 56
Найти высоту треугольника со сторонами 115, 111 и 93
Найти высоту треугольника со сторонами 85, 76 и 36
Найти высоту треугольника со сторонами 136, 124 и 48
Найти высоту треугольника со сторонами 144, 130 и 73
Найти высоту треугольника со сторонами 124, 94 и 56
Найти высоту треугольника со сторонами 115, 111 и 93