Рассчитать высоту треугольника со сторонами 127, 115 и 29

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 115 + 29}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-127)(135.5-115)(135.5-29)}}{115}\normalsize = 27.5780148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-127)(135.5-115)(135.5-29)}}{127}\normalsize = 24.9722181}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-127)(135.5-115)(135.5-29)}}{29}\normalsize = 109.361093}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 115 и 29 равна 27.5780148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 115 и 29 равна 24.9722181
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 115 и 29 равна 109.361093
Ссылка на результат
?n1=127&n2=115&n3=29