Рассчитать высоту треугольника со сторонами 127, 119 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 119 + 62}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-127)(154-119)(154-62)}}{119}\normalsize = 61.4968984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-127)(154-119)(154-62)}}{127}\normalsize = 57.623078}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-127)(154-119)(154-62)}}{62}\normalsize = 118.034369}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 119 и 62 равна 61.4968984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 119 и 62 равна 57.623078
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 119 и 62 равна 118.034369
Ссылка на результат
?n1=127&n2=119&n3=62
Найти высоту треугольника со сторонами 112, 105 и 55
Найти высоту треугольника со сторонами 57, 47 и 40
Найти высоту треугольника со сторонами 112, 99 и 26
Найти высоту треугольника со сторонами 73, 73 и 15
Найти высоту треугольника со сторонами 146, 102 и 61
Найти высоту треугольника со сторонами 85, 64 и 28
Найти высоту треугольника со сторонами 57, 47 и 40
Найти высоту треугольника со сторонами 112, 99 и 26
Найти высоту треугольника со сторонами 73, 73 и 15
Найти высоту треугольника со сторонами 146, 102 и 61
Найти высоту треугольника со сторонами 85, 64 и 28