Рассчитать высоту треугольника со сторонами 127, 88 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 88 + 69}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-127)(142-88)(142-69)}}{88}\normalsize = 65.8560131}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-127)(142-88)(142-69)}}{127}\normalsize = 45.632513}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-127)(142-88)(142-69)}}{69}\normalsize = 83.9902776}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 88 и 69 равна 65.8560131
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 88 и 69 равна 45.632513
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 88 и 69 равна 83.9902776
Ссылка на результат
?n1=127&n2=88&n3=69
Найти высоту треугольника со сторонами 116, 110 и 70
Найти высоту треугольника со сторонами 143, 128 и 98
Найти высоту треугольника со сторонами 114, 91 и 86
Найти высоту треугольника со сторонами 101, 89 и 49
Найти высоту треугольника со сторонами 132, 129 и 14
Найти высоту треугольника со сторонами 119, 99 и 68
Найти высоту треугольника со сторонами 143, 128 и 98
Найти высоту треугольника со сторонами 114, 91 и 86
Найти высоту треугольника со сторонами 101, 89 и 49
Найти высоту треугольника со сторонами 132, 129 и 14
Найти высоту треугольника со сторонами 119, 99 и 68