Рассчитать высоту треугольника со сторонами 127, 89 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 89 + 51}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-127)(133.5-89)(133.5-51)}}{89}\normalsize = 40.1092259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-127)(133.5-89)(133.5-51)}}{127}\normalsize = 28.1080402}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-127)(133.5-89)(133.5-51)}}{51}\normalsize = 69.9945314}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 89 и 51 равна 40.1092259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 89 и 51 равна 28.1080402
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 89 и 51 равна 69.9945314
Ссылка на результат
?n1=127&n2=89&n3=51
Найти высоту треугольника со сторонами 124, 120 и 105
Найти высоту треугольника со сторонами 140, 103 и 84
Найти высоту треугольника со сторонами 126, 107 и 20
Найти высоту треугольника со сторонами 142, 126 и 94
Найти высоту треугольника со сторонами 88, 72 и 49
Найти высоту треугольника со сторонами 139, 131 и 114
Найти высоту треугольника со сторонами 140, 103 и 84
Найти высоту треугольника со сторонами 126, 107 и 20
Найти высоту треугольника со сторонами 142, 126 и 94
Найти высоту треугольника со сторонами 88, 72 и 49
Найти высоту треугольника со сторонами 139, 131 и 114