Рассчитать высоту треугольника со сторонами 127, 90 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 90 + 68}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-127)(142.5-90)(142.5-68)}}{90}\normalsize = 65.3158459}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-127)(142.5-90)(142.5-68)}}{127}\normalsize = 46.2868199}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-127)(142.5-90)(142.5-68)}}{68}\normalsize = 86.4474431}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 90 и 68 равна 65.3158459
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 90 и 68 равна 46.2868199
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 90 и 68 равна 86.4474431
Ссылка на результат
?n1=127&n2=90&n3=68
Найти высоту треугольника со сторонами 69, 57 и 18
Найти высоту треугольника со сторонами 99, 86 и 64
Найти высоту треугольника со сторонами 123, 87 и 72
Найти высоту треугольника со сторонами 117, 103 и 73
Найти высоту треугольника со сторонами 126, 113 и 101
Найти высоту треугольника со сторонами 83, 71 и 30
Найти высоту треугольника со сторонами 99, 86 и 64
Найти высоту треугольника со сторонами 123, 87 и 72
Найти высоту треугольника со сторонами 117, 103 и 73
Найти высоту треугольника со сторонами 126, 113 и 101
Найти высоту треугольника со сторонами 83, 71 и 30