Рассчитать высоту треугольника со сторонами 127, 96 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 96 + 35}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-127)(129-96)(129-35)}}{96}\normalsize = 18.6375796}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-127)(129-96)(129-35)}}{127}\normalsize = 14.0882492}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-127)(129-96)(129-35)}}{35}\normalsize = 51.1202185}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 96 и 35 равна 18.6375796
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 96 и 35 равна 14.0882492
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 96 и 35 равна 51.1202185
Ссылка на результат
?n1=127&n2=96&n3=35
Найти высоту треугольника со сторонами 94, 79 и 70
Найти высоту треугольника со сторонами 76, 53 и 29
Найти высоту треугольника со сторонами 105, 88 и 21
Найти высоту треугольника со сторонами 140, 117 и 35
Найти высоту треугольника со сторонами 47, 26 и 24
Найти высоту треугольника со сторонами 105, 80 и 56
Найти высоту треугольника со сторонами 76, 53 и 29
Найти высоту треугольника со сторонами 105, 88 и 21
Найти высоту треугольника со сторонами 140, 117 и 35
Найти высоту треугольника со сторонами 47, 26 и 24
Найти высоту треугольника со сторонами 105, 80 и 56