Рассчитать высоту треугольника со сторонами 128, 100 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 100 + 70}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-128)(149-100)(149-70)}}{100}\normalsize = 69.6056291}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-128)(149-100)(149-70)}}{128}\normalsize = 54.3793977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-128)(149-100)(149-70)}}{70}\normalsize = 99.436613}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 100 и 70 равна 69.6056291
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 100 и 70 равна 54.3793977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 100 и 70 равна 99.436613
Ссылка на результат
?n1=128&n2=100&n3=70
Найти высоту треугольника со сторонами 99, 67 и 39
Найти высоту треугольника со сторонами 148, 101 и 78
Найти высоту треугольника со сторонами 134, 131 и 86
Найти высоту треугольника со сторонами 90, 72 и 72
Найти высоту треугольника со сторонами 132, 97 и 79
Найти высоту треугольника со сторонами 105, 100 и 62
Найти высоту треугольника со сторонами 148, 101 и 78
Найти высоту треугольника со сторонами 134, 131 и 86
Найти высоту треугольника со сторонами 90, 72 и 72
Найти высоту треугольника со сторонами 132, 97 и 79
Найти высоту треугольника со сторонами 105, 100 и 62