Рассчитать высоту треугольника со сторонами 128, 101 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 101 + 53}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-128)(141-101)(141-53)}}{101}\normalsize = 50.2992126}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-128)(141-101)(141-53)}}{128}\normalsize = 39.6892224}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-128)(141-101)(141-53)}}{53}\normalsize = 95.8532164}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 101 и 53 равна 50.2992126
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 101 и 53 равна 39.6892224
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 101 и 53 равна 95.8532164
Ссылка на результат
?n1=128&n2=101&n3=53
Найти высоту треугольника со сторонами 144, 132 и 132
Найти высоту треугольника со сторонами 132, 129 и 105
Найти высоту треугольника со сторонами 140, 135 и 56
Найти высоту треугольника со сторонами 105, 94 и 17
Найти высоту треугольника со сторонами 129, 117 и 15
Найти высоту треугольника со сторонами 115, 85 и 37
Найти высоту треугольника со сторонами 132, 129 и 105
Найти высоту треугольника со сторонами 140, 135 и 56
Найти высоту треугольника со сторонами 105, 94 и 17
Найти высоту треугольника со сторонами 129, 117 и 15
Найти высоту треугольника со сторонами 115, 85 и 37