Рассчитать высоту треугольника со сторонами 128, 101 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 101 + 57}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-128)(143-101)(143-57)}}{101}\normalsize = 55.1183415}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-128)(143-101)(143-57)}}{128}\normalsize = 43.4918163}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-128)(143-101)(143-57)}}{57}\normalsize = 97.6658331}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 101 и 57 равна 55.1183415
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 101 и 57 равна 43.4918163
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 101 и 57 равна 97.6658331
Ссылка на результат
?n1=128&n2=101&n3=57
Найти высоту треугольника со сторонами 135, 118 и 107
Найти высоту треугольника со сторонами 129, 128 и 111
Найти высоту треугольника со сторонами 52, 31 и 27
Найти высоту треугольника со сторонами 139, 132 и 69
Найти высоту треугольника со сторонами 88, 77 и 59
Найти высоту треугольника со сторонами 93, 88 и 20
Найти высоту треугольника со сторонами 129, 128 и 111
Найти высоту треугольника со сторонами 52, 31 и 27
Найти высоту треугольника со сторонами 139, 132 и 69
Найти высоту треугольника со сторонами 88, 77 и 59
Найти высоту треугольника со сторонами 93, 88 и 20