Рассчитать высоту треугольника со сторонами 128, 104 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 104 + 55}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-128)(143.5-104)(143.5-55)}}{104}\normalsize = 53.62393}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-128)(143.5-104)(143.5-55)}}{128}\normalsize = 43.5694431}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-128)(143.5-104)(143.5-55)}}{55}\normalsize = 101.397977}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 104 и 55 равна 53.62393
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 104 и 55 равна 43.5694431
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 104 и 55 равна 101.397977
Ссылка на результат
?n1=128&n2=104&n3=55
Найти высоту треугольника со сторонами 142, 115 и 106
Найти высоту треугольника со сторонами 111, 103 и 62
Найти высоту треугольника со сторонами 147, 145 и 92
Найти высоту треугольника со сторонами 102, 102 и 90
Найти высоту треугольника со сторонами 149, 138 и 50
Найти высоту треугольника со сторонами 127, 123 и 28
Найти высоту треугольника со сторонами 111, 103 и 62
Найти высоту треугольника со сторонами 147, 145 и 92
Найти высоту треугольника со сторонами 102, 102 и 90
Найти высоту треугольника со сторонами 149, 138 и 50
Найти высоту треугольника со сторонами 127, 123 и 28