Рассчитать высоту треугольника со сторонами 128, 105 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 105 + 104}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-128)(168.5-105)(168.5-104)}}{105}\normalsize = 100.701254}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-128)(168.5-105)(168.5-104)}}{128}\normalsize = 82.6064978}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-128)(168.5-105)(168.5-104)}}{104}\normalsize = 101.669536}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 105 и 104 равна 100.701254
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 105 и 104 равна 82.6064978
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 105 и 104 равна 101.669536
Ссылка на результат
?n1=128&n2=105&n3=104
Найти высоту треугольника со сторонами 147, 142 и 24
Найти высоту треугольника со сторонами 131, 128 и 102
Найти высоту треугольника со сторонами 62, 38 и 32
Найти высоту треугольника со сторонами 138, 120 и 33
Найти высоту треугольника со сторонами 66, 54 и 28
Найти высоту треугольника со сторонами 136, 107 и 48
Найти высоту треугольника со сторонами 131, 128 и 102
Найти высоту треугольника со сторонами 62, 38 и 32
Найти высоту треугольника со сторонами 138, 120 и 33
Найти высоту треугольника со сторонами 66, 54 и 28
Найти высоту треугольника со сторонами 136, 107 и 48