Рассчитать высоту треугольника со сторонами 128, 107 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 107 + 70}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-128)(152.5-107)(152.5-70)}}{107}\normalsize = 69.9998089}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-128)(152.5-107)(152.5-70)}}{128}\normalsize = 58.5154653}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-128)(152.5-107)(152.5-70)}}{70}\normalsize = 106.999708}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 107 и 70 равна 69.9998089
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 107 и 70 равна 58.5154653
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 107 и 70 равна 106.999708
Ссылка на результат
?n1=128&n2=107&n3=70
Найти высоту треугольника со сторонами 90, 71 и 55
Найти высоту треугольника со сторонами 112, 82 и 48
Найти высоту треугольника со сторонами 149, 142 и 26
Найти высоту треугольника со сторонами 132, 123 и 70
Найти высоту треугольника со сторонами 134, 109 и 59
Найти высоту треугольника со сторонами 125, 89 и 83
Найти высоту треугольника со сторонами 112, 82 и 48
Найти высоту треугольника со сторонами 149, 142 и 26
Найти высоту треугольника со сторонами 132, 123 и 70
Найти высоту треугольника со сторонами 134, 109 и 59
Найти высоту треугольника со сторонами 125, 89 и 83