Рассчитать высоту треугольника со сторонами 128, 108 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 108 + 69}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-128)(152.5-108)(152.5-69)}}{108}\normalsize = 68.9997389}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-128)(152.5-108)(152.5-69)}}{128}\normalsize = 58.2185297}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-128)(152.5-108)(152.5-69)}}{69}\normalsize = 107.999591}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 108 и 69 равна 68.9997389
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 108 и 69 равна 58.2185297
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 108 и 69 равна 107.999591
Ссылка на результат
?n1=128&n2=108&n3=69
Найти высоту треугольника со сторонами 118, 101 и 52
Найти высоту треугольника со сторонами 64, 58 и 23
Найти высоту треугольника со сторонами 115, 85 и 83
Найти высоту треугольника со сторонами 148, 134 и 73
Найти высоту треугольника со сторонами 131, 111 и 59
Найти высоту треугольника со сторонами 132, 132 и 39
Найти высоту треугольника со сторонами 64, 58 и 23
Найти высоту треугольника со сторонами 115, 85 и 83
Найти высоту треугольника со сторонами 148, 134 и 73
Найти высоту треугольника со сторонами 131, 111 и 59
Найти высоту треугольника со сторонами 132, 132 и 39