Рассчитать высоту треугольника со сторонами 128, 109 и 37

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 109 + 37}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-128)(137-109)(137-37)}}{109}\normalsize = 34.0929084}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-128)(137-109)(137-37)}}{128}\normalsize = 29.0322423}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-128)(137-109)(137-37)}}{37}\normalsize = 100.435865}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 109 и 37 равна 34.0929084
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 109 и 37 равна 29.0322423
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 109 и 37 равна 100.435865
Ссылка на результат
?n1=128&n2=109&n3=37