Рассчитать высоту треугольника со сторонами 128, 110 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 110 + 58}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-128)(148-110)(148-58)}}{110}\normalsize = 57.8490484}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-128)(148-110)(148-58)}}{128}\normalsize = 49.7140259}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-128)(148-110)(148-58)}}{58}\normalsize = 109.713712}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 110 и 58 равна 57.8490484
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 110 и 58 равна 49.7140259
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 110 и 58 равна 109.713712
Ссылка на результат
?n1=128&n2=110&n3=58
Найти высоту треугольника со сторонами 132, 125 и 123
Найти высоту треугольника со сторонами 112, 109 и 87
Найти высоту треугольника со сторонами 53, 39 и 34
Найти высоту треугольника со сторонами 84, 82 и 29
Найти высоту треугольника со сторонами 113, 109 и 14
Найти высоту треугольника со сторонами 49, 41 и 34
Найти высоту треугольника со сторонами 112, 109 и 87
Найти высоту треугольника со сторонами 53, 39 и 34
Найти высоту треугольника со сторонами 84, 82 и 29
Найти высоту треугольника со сторонами 113, 109 и 14
Найти высоту треугольника со сторонами 49, 41 и 34