Рассчитать высоту треугольника со сторонами 128, 110 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 110 + 61}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-128)(149.5-110)(149.5-61)}}{110}\normalsize = 60.9462965}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-128)(149.5-110)(149.5-61)}}{128}\normalsize = 52.3757235}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-128)(149.5-110)(149.5-61)}}{61}\normalsize = 109.903158}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 110 и 61 равна 60.9462965
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 110 и 61 равна 52.3757235
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 110 и 61 равна 109.903158
Ссылка на результат
?n1=128&n2=110&n3=61
Найти высоту треугольника со сторонами 150, 135 и 107
Найти высоту треугольника со сторонами 138, 119 и 119
Найти высоту треугольника со сторонами 116, 109 и 15
Найти высоту треугольника со сторонами 146, 143 и 103
Найти высоту треугольника со сторонами 106, 86 и 39
Найти высоту треугольника со сторонами 137, 98 и 76
Найти высоту треугольника со сторонами 138, 119 и 119
Найти высоту треугольника со сторонами 116, 109 и 15
Найти высоту треугольника со сторонами 146, 143 и 103
Найти высоту треугольника со сторонами 106, 86 и 39
Найти высоту треугольника со сторонами 137, 98 и 76