Рассчитать высоту треугольника со сторонами 128, 118 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 118 + 112}{2}} \normalsize = 179}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{179(179-128)(179-118)(179-112)}}{118}\normalsize = 103.528974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{179(179-128)(179-118)(179-112)}}{128}\normalsize = 95.4407731}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{179(179-128)(179-118)(179-112)}}{112}\normalsize = 109.075169}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 118 и 112 равна 103.528974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 118 и 112 равна 95.4407731
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 118 и 112 равна 109.075169
Ссылка на результат
?n1=128&n2=118&n3=112
Найти высоту треугольника со сторонами 109, 67 и 52
Найти высоту треугольника со сторонами 39, 36 и 4
Найти высоту треугольника со сторонами 110, 105 и 88
Найти высоту треугольника со сторонами 141, 141 и 125
Найти высоту треугольника со сторонами 95, 82 и 29
Найти высоту треугольника со сторонами 97, 92 и 51
Найти высоту треугольника со сторонами 39, 36 и 4
Найти высоту треугольника со сторонами 110, 105 и 88
Найти высоту треугольника со сторонами 141, 141 и 125
Найти высоту треугольника со сторонами 95, 82 и 29
Найти высоту треугольника со сторонами 97, 92 и 51